Harvard Physics Phd Acceptance Rate

Harvard Physics PhD Acceptance Rate

For the class of graduate students entering in Fall 2020, SEAS received more than 4300 applications across all Ph.D. and master’s programs and admitted about ~7 percent of applicants. For enrolled students across all Ph.D. and master’s programs, average undergraduate GPA s were over 3.8 (on a 4.0 scale), average GRE quantitative scores were within the 90-95th percentiles, and average GRE verbal scores were within the 80-85th percentiles. Due to the interdisciplinary nature of SEAS, students come with a variety of undergraduate majors. Common undergraduate majors include computer science, engineering (examples: mechanical, bio, electrical, and chemical), mathematics, physics, and chemistry.

harvard physics phd acceptance rate

mit physics phd acceptance rate

  • MIT Graduate Admissions Online Graduate Application
  • Application Fee: $75 NOTE: Applicants who feel that this fee may prevent them from applying should send a short email to [email protected] to describe their general reasons for requesting a waiver. We will follow up with information about how to apply for a formal ‘application fee waiver’. Additional documents may be required, so additional time will be necessary to process requests. Either the fee or a formal fee waiver is required with a submitted application.
  • Unofficial transcripts are sufficient for our initial review, with final transcripts required as a condition of matriculation for successful applicants. Applicants should include a scan of their transcript(s) and, if a degree is in progress, should include a list of the class subjects being taken in the current semester. The GradApply portal will allow applicants to log back into the application after the deadline to add their Fall term grades when they are available.

    Note: We will respect decisions regarding the adoption of Pass/No Record (or Credit/No Credit or Pass/Fail) and other grading options during the unprecedented period of COVID-19 disruptions, whether those decisions were made by institutions or by individual students.

  • GRE General Test – Not considered in 2021 under COVID-19 special policy.
  • GRE Physics Subject Test – Not considered in 2021 under COVID-19 special policy.
  • TOEFL or IELTS Test or a waiver is required for non-native English speakers. MIT’s TOEFL school code is 3514; the code for the Department of Physics is 76. IELTS does not require a code. Self-reported scores are sufficient for our initial application screening, with official scores required for admitted students as a condition of their offer. Applicants should attach a scanned copy of their test score report.
  • Letters should include any individual work applicants have done and/or areas where they have special strengths. It is possible to submit up to 6 total letters, but 3 are sufficient for a complete application and committee members may evaluate applications based on the first three letters that they read.

    Research is central to graduate study in physics. The Statement of Objectives/Purpose should include descriptions of research projects, aptitude and achievements as completely as possible. This important part of the application provides an opportunity to describe any interests, skills, and background relative to the research areas selected on the application form. Applicants should share anything that prepares them for graduate studies and describe their proudest achievements.

    mit physics grad school acceptance rate

    Although the number varies each year, the Department of Physics usually receives more than 1,000 applications and admits around 90 applicants. The incoming class in recent years has averaged around 45 students.


    This page is a selection of things you could do to beef up your resume for admission to a top physics graduate program. It is not telling you to or how to keep up with the Joneses.

    Moreover, you do not need everything on this page to get into a good graduate school – these are only suggestions to improve your resume. A few outstanding qualities that point to high potential in physics can more than make up for a weak area on your application. Do not see this section as discouragement if you are already nearing the end of college.

    It’s much, much better to do what you yourself are interested in and capable of than what someone else tells you that you should feel obligated to do. Push yourself and strive to achieve, but don’t burn yourself out. It’s much better to be happy and to do what’s right for you than to win any award or attend any school.

    — The people who go to physics graduate school and succeed in it love physics and are in it for the long haul: they find solving problems intellectually stimulating, they think the questions asked in physics are interesting, and it’s something they could do for the next half-century.

    The point of this section is to help students who already know they love research — and who are already actively seeking out new opportunities — craft their college experiences and refine their CV to help them reach their goals.

    Physics is not for everyone, and it’s not always an easy path. If you want it for the wrong reasons, like to please a parent or to get just another mark of prestige on your resume, you’re likely to burn out and have problems later on. Don’t do that! Find the right career for you that you will be happy with. —

    That being said, if getting to a top school is your goal, then you need to demonstrate that you are an outstanding student and researcher capable of tackling unsolved problems in physics. It helps to plan strategically in advance — you’ll need to go well above and beyond WashU’s expectations for a physics major, do a lot of hard work, and slog through some tedious nonsense to get there. But on the whole, if this is what you love to do, then it should be fun. And even if you don’t make it to the tippity top places, your opportunities may still be a lot better off for trying. There are still many amazing schools out there, and you can still get a top postdoc coming out of those places.

    Currently, the top six graduate programs in the United States for physics are considered to be (by US News and World Report, and in alphabetical order because order doesn’t really matter here):

  • Berkeley
  • Caltech
  • Harvard
  • MIT
  • Princeton
  • Stanford
  • There are many other all-around excellent institutions (e.g. Cornell and UChicago), as well as places that are very highly regarded in a specific subfield (e.g. UCSB and Stony Brook for high-energy theory, Arizona for space sciences, and Michigan State for nuclear physics). Don’t feel like the six listed schools are the only six places you can go.

    Also note that if you’re applying to departments that are not titled purely “Physics” — like Applied Physics, Astrophysics, or Engineering departments — then the list of top schools is different. Also keep in mind that the professor you’re working for will be important too!

    In addition to being elite institutions, in the 2017-18 school year, some top graduate schools paid each of its graduate students nearly double the amount of lesser-known physics schools in stipends and benefits. (example: guaranteed ~$40K + full health insurance versus $23K + partial health subsidy) Of course, stipend varies by cost of living in the location too (but the best places generally give the best stipend relative to cost of living). It is hard to get a full-time job in academia, but much harder if you do not have a degree from a top institution (but even then, only a minuscule percent of students at the top institutions become professors).

    These schools have acceptance rates slightly under 10%. To add to the difficulty, you will be competing with applicants that already did their undergraduate studies at this very selection of top US physics schools, in addition to the top schools worldwide. Do not despair; Washington University physics students just like you get into top graduate programs every year. It IS! possible to distinguish yourself within the applicant pool and gain admission to the very top universities. How might you do so? Keep on reading to find out!

    By the way, you should also look into the prestigious nationally-competitive science graduate funding awards like the:

  • NSDEG Fellowship
  • NSF Graduate Research Fellowship
  • Hertz Fellowship
  • and others.
  • Graduate school admissions are very different from undergraduate admissions. As you probably know if you’re reading this page, the prerequisites for getting into a top undergraduate college were not all that complicated or subtle to figure out: a high GPA in the hardest courses your school offered, a good ACT/SAT score, a few state/national awards, and a well-rounded set of extracurricular activities. The right leadership position (e.g. student council president), being a legacy applicant, or being the right person at the right time (e.g. a tuba player in a year the college marching band needed a new one) all added bonus points to your application.

    Graduate school is quite different. Being all-around smart or generally a hard worker isn’t going to get you where you need to be. Physics graduate school essentially entails a five-year apprenticeship under a physicist to train you to become a physicist as well. As such, you need to gear your resume to show that you can succeed in that specific task. Well-rounded excellence absolutely will not suffice. (Not to say you can’t still be well-rounded in college, but you still need to beef up the physics side of your resume to meet the rather narrow expectations for admission to physics graduate schools.)

    You’re going to have many tough choices about how to use your time and resources in college. Try to anticipate the benefit/detriment each choice will give you in the future (in terms of bigger graduate stipends and better schools), rather than your short-term needs and wants. There isn’t always an easy answer.

    That glassblowing class may seem like your dream course senior fall, but it conflicts with General Relativity! You’ll get in shape on the club soccer team, but you wouldn’t have time to be treasurer of SPS. You’ll save $1000 in housing costs this summer by working in your hometown, but is that money worth passing up the research gig at an Ivy League school?

    Each graduate school evaluates your application not only in terms of how well you are doing compared to current applicants, but they also often store many years worth of data on applicants from each school. Being number one in your physics class at WashU isn’t going to cut it; if you’re taking easier classes and not doing much research compared to past years’ applicants, you’re going to have a tough time. That being said, you’re also not competing head-to-head with your own classmates. If there are multiple truly outstanding candidates in the same year from WashU, graduate schools will recognize this and admit multiple students.

    Areas we discuss:

    1. Research and connections

    Your research experience and potential for future success in research is the SINGLE MOST IMPORTANT FACTOR determining whether you will get into graduate school. Even if everything else on your resume is perfect, you will not be able to get into graduate school without the research. (And if your research is spectacular, it will make up for a lot of imperfection elsewhere in your resume.)

    There are three main ways that graduate schools will evaluate this research aspect: (1) the part of your application where you have to list published papers, (2) your personal statement, where you’ll write about your specific contributions to each lab/STEM job you worked in, and (3) what your research advisors say about you in their recommendation letters.

    Know why you’re going to graduate school

    The first major hurdle you need to overcome in the admissions process is demonstrating to professors that you are actually committed to graduate studies. Successful applicants to top schools are able to use real examples from their life to demonstrate that:

  • you know what being in a research group is like
  • you enjoy being in a research group and would enjoy doing it for the next five to eight years of your life
  • you want a research and development job in the future, and preferably one in academia (whether that’s actually true or not, you need to say it).
  • If you’re asking yourself if this is narrow-minded, consider it from the point of view of the professors who are reading your applications. They’re about to commit to spending five to eight years to mentoring you in their specialized area of physics research. The point of this training isn’t just to make you know about some niche area and the techniques of working in it, and it isn’t to get you the title of “doctor.” It’s to teach you how to be a creative researcher in a subfield of physics and to prepare you to do a task of a similar bent in the future: your own personal scientific research in your own niche area, which advances the frontiers of scientific knowledge. If you aren’t interested in this job, then why should they take you on as an apprentice instead of someone else? It would be a waste of time for you both. Doctoral programs are not like college: this isn’t a time for exploration or figuring out what you like to do. You enter a doctoral program because you have a pretty fixed idea of what you want in the future (to do research), and this is the next step to doing so.

    Let us qualify that statement. In the sciences, you don’t have to know exactly what research you want to do yet. But, by the time of application, your ideas should already be starting to take shape. Your thoughts might be something like:

  • I am going to be a string theorist. It is my destiny.
  • I love physics, and I love sitting on my computer and writing code. I know I want to do computational physics, but I don’t know in what subfield of physics yet. I’m going to apply to universities where lots of professors do computational stuff and do rotations to figure that out.
  • I’ve tried a lot of different research in college, and I liked biophysics best. I may seem like a dilettante because I’m applying to programs in physics, biomedical engineering, and biology, but I know which specific professor I’d want to work for in each university and its department.
  • I tried three areas of physics research. I kept getting lab jobs every summer because I just love being in the lab. However, no physics subfield I tried was quite the perfect fit. I learned a lot about myself and what I like and don’t like in college. I’m going to try XXX in graduate school and do a few rotations to find out what’s the best fit.
  • That is, you don’t have to know exactly the thing you want to work on for exactly one person, but you know more than “uhh, I like physics, I guess?”

    If you can’t actually foresee yourself doing physics for the next half century or so, don’t go to graduate school. No matter how fancy of a place you can get into and no matter how happy your parents will be to tell all their friends that their kid is getting a PhD from [insert fancy place here], it isn’t worth it to make yourself miserable for four years of college and then eight years of graduate school and then who knows how many years of a career to do something you hate. It isn’t easy, but learn how to say “no” and go chat with your advisors for reassurance and support.

    If preparing yourself to get into a top graduate school seems like an almost-masochistic amount of hard work, well, you’re *almost* right. It can take a lot of time and effort to set yourself up for getting in. However, if graduate school is the right choice for you (at this moment in your life), then what your friends tell you is a crazy amount of time you’re putting into physics is probably truly enjoyable and doesn’t feel like work (most of the time). You spend all those hours because you find joy in creating things and experimenting in the lab, you love playing around with equations, or you have a burning desire to know about the nature of our universe.

    (Not that there aren’t things you won’t enjoy from time to time, like debugging code, cleaning Petri dishes, an unnecessarily difficult problem set, or taking a really tedious required course in an area of physics you don’t like. Or just courses in general…out of ~six years in grad school, you’ll only spend one to two partially in the classroom.)

    Do lots of research, and do it well

    Most, if not all, successful applicants to top schools have at least one paper (published or submitted or at least far along in preparation) before applying. It helps your application immensely if you are listed as first-author on the paper (i.e. you did the majority of the new research), and even further so if you actually helped write the paper (your advisor would mention that in his/her reference letter).

    — Getting a paper is nothing you can force (so don’t go up to your professor and tell them you’re mad at them that you didn’t get a paper this summer). It’s some combination of your amount of experience doing research, being on the “right” project, intangible qualities like creativity and grit, as well as a bit of luck! However, if you’ve been in the same group for a while, it is acceptable to lightly slip into conversation with your professor that you’d like to be on a project leading to a paper. —

    Even if you don’t manage to do enough to have a paper by first semester of senior year, you need to have demonstrated to your research advisors that you are smart, honest, dedicated, hard-working, and creative enough that in the future you will be churning out papers. Yes, we did type advisors in the plural (see below).

    You should seek out opportunities to learn more about research and present your own research as well. You should absolutely not pass up opportunities to present your research at group meetings, and you might want to participate in a couple of undergraduate research symposia. It looks very good on your resume if you attend (and preferably present/have your name on a paper at) any professional conferences, attend a graduate summer research school, or go to other relevant events suggested by your advisor. Also, you should definitely write and present a senior thesis.

    Do not lie, cheat, steal, falsify data, or do anything dishonest

    While research is incredibly important for your application, don’t do anything dishonest in the lab to try to make your resume better. It will destroy your chances of a career in physics, whether now (your research advisor discovers it and sends a horrendous letter of recommendation to each graduate school) or later, when it could get you fired from a research job. Better to get into a mediocre school honestly than a great one dishonestly. You can always get a great postdoc later!

    Make connections with your college professors

    Life is all about the connections. Even though college may seem very focused on scores, it is important to remember that the world is not a meritocracy based solely on standardized test performance and GPA’s alone, neither now nor later in your career. Even in physics, the most important criteria are subjective — whether your professors think you have talent and drive (your reference letters), what the physics community thinks about your research (admissions essay readers; reviewers of journal articles), and even whether other people think you’re personable (interviewers).

    Make a point of getting to know a lot of people to advance your professional career. You never know who will later be on an admissions or hiring committee, have a summer research position open, or be co-authoring a paper with your group. As important as the quality of an application itself could be the faculty member that picks up the phone and gets your file noticed in the stack. And you never know who can direct you to new and exciting opportunities!

    You’ll need at least three professors that can write you a strong reference letter. It’s also nice to get to know a few faculty on a personal level, whom you can approach for advice about not just solving physics problems but also about what courses to take, applying to graduate school or jobs, what academia is like, etc. Sometimes they’ll even give you helpful general life advice!

    On the flipside, it’s also important not to burn any bridges unnecessarily or over minor issues — professors have tenure, so they’re going to be around influencing the field (and your career path) for a long time. If someone crosses a major line, though, we heartily encourage you to seek further advice from someone more qualified and handle the situation in whatever manner you deem fit.

    Make connections with researchers

    As far as research goes, it is fine to work with one professor for the majority of college, and in fact, it can be very helpful, especially if you get a paper together. However, if you’ve been doing research since the beginning of freshman year, it may be good to spend at least one semester or one summer in another lab. You’ll make connections with a new professor who can confirm your first professor’s ideas about how great you are in a reference letter. You’ll also learn a lot about a new subfield of physics, which can be surprisingly helpful in the future.

    Now, where should you work? That is really up to you. However, it will make your application shine if you can do one of the following:

  • Go to a different university (or organization). It’s one thing if you have a letter of recommendation saying that you’re one of the best students at Wash. U. this year. It’s a much better thing if you’re one of the top students at two different universities. STEM jobs elsewhere, like an R&D position in industry or work at a government lab, can provide good letters as well.
  • Even better: spend time working somewhere (or with someone) famous for physics. Wash. U. is an amazing school and you’ll be proud alumni someday. However, we’re not super well-known for physics. If you get a Princeton professor to say in their recommendation, “This kid is just as good as most Princeton graduate students I have in my lab,” that will help professors at top schools evaluate your application a lot more than if you just have recommendations comparing you to students at Wash. U. Moreover, professors can help you get admitted to their own university, and they probably have connections at the other big ones as well (e.g. a former student or collaborator might be on the admissions committee). Having a well-known professor write you a recommendation is thus also a big plus.
    • However, be aware that just because someone is famous or works somewhere famous does not necessarily mean they will be a good research advisor or write you a good recommendation letter. A good way to ascertain advisor quality is to search for where their students have ended up (instead of just admiring the professor’s personal successes).
  • Go abroad to work on physics. You not only managed to get yourself a fancy job abroad, but you also stretched outside your comfort zone, did physics on multiple continents, can work with people from another culture, and people think well of you everywhere. There are lots of ways you can frame this experience in your application, and you can always do so well.
  • Go to an REU, a prestigious program, or fancy lab. Top universities aren’t the only summer programs for physics and related fields that can get you far. Some other highly prestigious summer programs include the CERN summer research and DAAD-RISE programs abroad (physics); the NSA Director’s Summer Program and the Minnesota-Duluth REU (for mathematics); and others, including research and development positions in industry and government facilities. One of these on your application can be a huge plus, especially if you get a great recommendation letter out of it.
  • No matter where you go, you need to act as both a good employee and a good student: working hard, learning everything you need to, and going well above and beyond the expectations of your research supervisor. For example, when your professor asks you to read a paper, don’t just skim it. Sometimes it’ll take a few hours to truly understand a three-page article, but that’s time well spent. Don’t do sloppy work in lab; be clean, precise, and get the best results you can. Check out our advice pages on how to be a successful research student!

    A good rule of thumb is to prevent yourself from treating your summer lab job in an exciting location as you might a high school summer job — going through the motions from 9-5 and then taking off and enjoying the rest of your day. You’re trying to get into a profession, so you need to act like a professional — put in well beyond the expected hours and do well beyond the expected work. Often that means spending time at night and on weekends learning the background material inside and out, as well as coming into the lab early or staying late to get a project done.

    When WashU tells you not to hold another job or significant commitment alongside a research fellowship, they’re doing it for your benefit — if you aren’t putting your all into your research, you will not be competitive with the many outstanding students worldwide applying for the very few elite and well-paying graduate positions. Think long-term, not just what’s best for you right now.

    Related Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *